
Stat 5870: Key points and formulae Week 6

Importance of the assumptions / consequences of violating them: (reminder)
Independence: crucial / wrong se so wrong p-value, wrong ci.
Equal variance: depends on equality of sample sizes / when unequal, wrong se
Normality: low when same shape. Outliers always a concern

A: Overview of last 5 weeks, how to choose a method
Expanded version of the book’s process in section 3.4.

Consistent with the book’s recommendations where they overlap
Goal is to provide a justifiable analysis.
No single right way to choose. My suggestion based on:
Question → (Design) → Data → Analysis (makes assumptions)
which we saw in the first week

My suggested approach:
What is the question?

Differences in location (mean, median)? Differences in spread?
What is the study design?

experimental or observational? (i.e., causal conclusions?)
Are data paired or not?
Any concerns about independence: eu = ou? serial effects?
Do I want a confidence interval? or just a p-value?

What assumptions are reasonable (or not badly violated)?
skewed distribution of errors? apparent outliers?
reasonably equal variances?

If you want a ci, use t-based methods,
transform responses to improve assumptions

If assumptions are good, perhaps after transformation
use a t-test

If assumptions are not good even after transformation
use a non-parametric test (on ranks) or randomization test (on data values)

If some observations are censored, or want resistance to outliers
use a non-parametric test (on ranks)

This is the end of the material covered on midterm I.
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Seriously non-normal data:
Response is Yes/No (Bernoulli data) or a count (0, 1, 2, · · · )
Discrete responses: 1/0 for Yes/No, integers for counts

If statistics is a collection of named methods, need lots of new names
General principles are identical to what we’ve already seen (or will see)

details are different
computing much harder, but that’s what computers take care of

B: Equality of two proportions:
example Vit C study (Case study 18.2), notation:

Treatment # not # cold Row total
Placebo 76 335 R1 = 411
Vit. C 105 302 R2 = 407
Col. total C1 = 181 C2 =637 N = 818

Bernoulli data: Response is Yes or No
Focus (usually) on proportion of Yes (or No) within a group

Proportion = # Yes / # tries
Common to code Yi = 1 (Yes) or 0 (No)

Then proportion is the average Yi, p = ΣYi/N
Percent = 100 × proportion

Precision: depends on population proportion, π:

se p =
√

π(1−π)
N

Not constant! (big difference from normally distrib. data)
largest when π = 0.5 (see figure on board)

estimate of se p =
√

p(1−p)
N

(plug-in p for π)

Inference:
ci for π: p± z1−α/2 se p

se computed using p, i.e., plugging p into se formula
95% ci: z0.975 = 1.96

Endpoints can be < 0 or > 1.
Lots of other ways to compute CI for a proportion

One group, test π = π0: Z = (p− π0)/se p
se computed using π0, i.e., plugging π0 into se formula

both use z scores, not t scores, because not estimating s
Z has a normal distribution with mean 0, variance 1
equivalent to T distribution with ∞ d.f.

Bernoulli and Binomial distributions:
Two different ways of describing yes/no data
1) Focus on individuals: Y = 1 or 0 i.e. event happened (1) or it didn’t (0)

This is a Bernoulli distribution.
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Has 1 parameter, the probability of the event, π

Y ∼ Bernoulli(π)

2) Focus on number of times an event “happens” out of N “tries”
This is a Binomial distribution

Z ∼ Binomial(N, π)

If N individuals have the same π, number of events is:

Z =
N∑
i=1

Yi ∼ Binomial (N, π)

Tests of whether two groups have same proportion, i.e., π1 = π2:
Could construct a Z test of π1 − π2 = 0

Need to compute se π̂1 − π̂2 when Ho true, i.e., π1 = π2
Requires P[cold] ignoring treatment group, use total # colds, total # individuals
In terms of above table, overall P[cold] = π̂ = C2/N

Chi-square test of equal proportions
Chi-square test uses model comparison, instead of a Z test for one parameter

Simpler way to do the computations
Generalizes to more than 2 groups (or more than 2 responses)

C: Model comparison, using T-test as example:
Model I: two groups have the same population mean

Group A YAi = µ+ εAi

Group B YBi = µ+ εBi

Model II: two groups have different population means

Group A YAi = µA + εAi

Group B YBi = µB + εBi

Model I expresses the null hypothesis of the test
Model II: expresses “not the null hypothesis”
Model II is more flexible, will always fit as well or better

never worse than model I
If Ho is true, model II will fit a little bit better than Model I
If Ho is false (means not the same)

model II will fit a lot better than model I
For normally distributed data, use Sums-of-squared errors as measure of fit
Leads to an F test

Will see all the details when we cover ANOVA and F tests
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Model comparison, for yes/no responses:
Model I: two groups have the same proportion of Yes (= had a cold)

Vit C Y1i ∼ Bernoulli(π)

Control Y2i ∼ Bernoulli(π)

Model II: two groups have different proportions of Yes

Vit C Y1i ∼ Bernoulli(π1)

Control Y2i ∼ Bernoulli(π2)

Or:
Model I: two groups have the same proportion of Yes (= had a cold)

Vit C Z1 ∼ Binomial(N1, π)

Control Z2 ∼ Binomial(N2, π)

Model II: two groups have different proportions of Yes

Vit C Z1 ∼ Binomial(N1, π1)

Control Z2 ∼ Binomial(N2, π2)

Use Chi-square statistic as measure of fit
Because Bernoulli or Binomial data have different properties than Normal data

se π̂ not constant, not dependent on a separately estimated s

D: Chi-square statistics:
Compare observed counts to what is expected given a model

Observed counts and notation

Treatment # not # cold Row total
Placebo O11 O12 R1

Vit. C O21 O22 R2

Col. total C1 C2 N

Expected cell counts when Ho true (π = π1 = π2)

Treatment # not # cold Row total
Placebo E11 = R1(1− π) E12 = R1π R1

Vit. C E21 = R2(1− π) E22 = R2π R2

Col. total C1 C2 N

Remember when Ho is true, estimate π̂ = C2/N , the overall proportion of the Cold event
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Treatment # not # cold Row total
Placebo E11 = R1C1/N E12 = R1C2/N R1

Vit. C E21 = R2C1/N E22 = R2C2/N R2

Col. total C1 C2 N

Logic: Ho is π1 = π2.
Reject when observed counts (Oij) are far from their expected counts (Eij)

Use Chi-square statistic as a measure of fit

C =
∑
ij

[
(Oij − Eij)2

Eij

]
Similar to sum of squares; denominator accounts for unequal variance

Model comparison:
Full model: Two P[cold], one for placebo, one for Vit. C, Fits perfectly, C = 0
Reduced model: One P[cold] = π, C computed as above

Large values ⇒ observed far from expected, reject Ho
Theory: when π1 = π2 and sample size sufficiently large,
C ∼ χ2

k Chi-square distribution with k df
df = (# Rows - 1) (# Cols -1 )

When is sample size sufficiently large?
Common advice: all Eij ≥ 1 and most (80% +) ≥ 5

When sample size not large, usual small sample procedure is Fisher’s exact test

Optional: demonstration that C = 0 for the full model (two P[cold])
Will show that under the full model Eij = Oij for every cell
Under the full model, P[cold — group ] = proportion of colds in a group
O12/R1 for placebo group
O22/R2 for Vit C group

Substituting into table of expected counts:

Treatment # not # cold Row total
Placebo E11 = R1O11/R1 E12 = R1O12/R1 R1

Vit. C E21 = R2O21/R2 E22 = R2O22/R2 R2

Col. total C1 C2 N

Treatment # not # cold Row total
Placebo E11 = O11 E12 = O12 R1

Vit. C E21 = O21 E22 = O22 R2

Col. total C1 C2 N
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E: Sampling models: How to obtain the data in above table; three common ways
Prospective Binomial sample: e.g., Vit C data

Two (or more) groups, then observe events, estimate P[event | group]
Retrospective Binomial sample: e.g., case-control study (Case study 18.3).

Especially useful when event is rare
Sample C1 events and C2, observe group for each
can estimate P[group | event] but not P[event | group] (without more info)
can estimate odds ratio (see below)

Multinomial sample: e.g. genetic linkage study
observe 4 groups defined by row and column labels
Q concerns independence of the row and column classifications

These differ by what is fixed by the design
Prospective Binomial: Number in each group (row totals)
Retrospective Binomial: Number of events and non-events (column totals)
Multinomial: Total number of subjects (only N)

There are still more sampling models, but they are much less frequently used
Theory ⇒ use Chi-square test for all three (when sample size large)

Different small sample methods

F: Odds ratios to describe differences in two proportions:
Difference, p1 − p2, has issues when applied to a wide range of populations

Vit. C: P[cold | Placebo] = 0.82, P[cold | Vit. C] = 0.74, Estimated diff. is 8%
What if a year or place when colds infrequent, e.g. 6% on placebo.

Would estimate P[cold | Vit.C] in that place as 6% - 8% = −2% ???
Odds ratios quantify relationship between two proportions

that is applicable across a wide range of baseline proportions
Odds = π/(1− π). related to betting: horse is a 2:1 favorite.

range from 0 (Prob = 0) to ∞ (Prob = 1)
Odds = 1 ⇒ Prob = 0.5

Statistical analysis commonly uses log odds
range from −∞ (Prob = 0) to ∞ (Prob = 1)
log Odds = 0 ⇒ Prob = 0.5

Odds ratio: comparison between two groups

Odds1/Odds2 =
π1(1− π2)
(1− π1)π2

Odds ratio = 1 when proportions equal, > 1 when π1 > π2
commonly use log odds ratio: = 0 when Odds1 = Odds2 or π1 = π2
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G: Inference for log odds ratio

estimate = log

[
O12 O21

O11 O22

]
Vit C study:

Choose to use log odds of cold in placebo - log odds of cold in VitC
odds of cold in placebo = O12/O11 = 335/76 = 4.41
odds of cold in Vit C = O22/O21 = 2.88

log odds ratio = log (4.41/2.88) = log 1.53 = 0.43
Easy to misinterpret as odds of “not cold’ in placebo vs in vitC

or odds of cold in Vit C vs in placebo
Sign difference (+ or -1). If it matters, I check against proportions

se ≈
√

1
O11

+ 1
O12

+ 1
O21

+ 1
O22

=
√

0.029 = 0.17

ci for log odds ratio: estimate ±z1−α/2 se
95% ci: z0.975 = 1.96
exponentiate to get ci for odds ratio
On log odds scale: 0.43± (1.96)(0.17) = (0.096, 0.76)
For odds ratio: (exp(0.096), exp(0.76)) = (1.10, 2.14)
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